بهبود عملکرد مدل شبکۀ عصبی مصنوعی با کمک تبدیل موجک و روش PCA برای مدلسازی و پیشبینی اکسیژن مورد نیاز بیولوژیکی (BOD)
نویسندگان
چکیده مقاله:
در دهههای اخیر، توسعۀ مدلهای هوش مصنوعی برای پیشبینی پدیدههای هیدرولوژیکی کاربرد زیادی پیدا کرده است. در این مطالعه، توانایی مدلهای شبکۀ عصبی مصنوعی بهمنظور مدلسازی و پیشبینی اکسیژن مورد نیاز بیولوژیکی (BOD) در رودخانۀ کارون واقع در غرب کشور ایران ارزیابی شد. بهمنظور بهبود نتایج شبیهسازی از آنالیز موجک بهعنوان مدل ترکیبی استفاده شد. سری زمانی ماهانۀ شاخص BOD رودخانۀ کارون در ایستگاه ملاثانی بهمدت 13سال (1381ـ 1393) و با استفاده از متغیرهای کمکی اکسیژن محلول (DO)، جریان رودخانه و دمای ماهانه شبیهسازی شد. بهترین ورودی مدلهای بهکار گرفتهشده با استفاده از روش تجزیه و تحلیل مؤلفههای اصلی (PCA) انتخاب شد. برای ارزیابی و مقایسۀ عملکرد مدلها از جذر میانگین مربعات خطا (RMSE)، ضریب تعیین (R2) و معیار اطلاعاتی آکائیک (AIC) استفاده شد. نتایج بهدستآمده بیانگر آن بود که شبکۀ عصبی مصنوعی میزان خطای 0412/0 و ضریب تعیین 76/0 دارد و اعمال تبدیل موجک روی دادههای ورودی مدل، سبب بهبود نتایج تا ضریب تعیین 89/0 و میزان خطای 0273/0 شد.
منابع مشابه
مدلسازی نوسانهای ماهانۀ آب زیرزمینی به وسیلۀ تبدیل موجک و شبکۀ عصبی پویا
مدلسازی نوسانهای زمانی آب زیرزمینی، در مدیریت حوزههای آبریز و ایجاد تعادل در عرضه و تقاضای آب اهمیت زیادی دارد. در سالهای اخیر استفاده از تحلیل موجک برای تجزیۀ سریهای زمانی و ترکیب آن با شبکههای عصبی بهصورت گستردهای در مدلسازی پدیدههای هیدرولوژیکی بهکار رفته است. در این تحقیق، توانایی مدل ترکیبی موجک- شبکۀ عصبی پویا برای پیشبینی یک ماه آیندۀ عمق آب زیرزمینی ارزیابی شده و این مدل با...
متن کاملمدلسازی نوسان های ماهانۀ آب زیرزمینی به وسیلۀ تبدیل موجک و شبکۀ عصبی پویا
مدلسازی نوسان های زمانی آب زیرزمینی، در مدیریت حوزههای آبریز و ایجاد تعادل در عرضه و تقاضای آب اهمیت زیادی دارد. در سالهای اخیر استفاده از تحلیل موجک برای تجزیۀ سریهای زمانی و ترکیب آن با شبکههای عصبی به صورت گستردهای در مدلسازی پدیدههای هیدرولوژیکی به کار رفته است. در این تحقیق، توانایی مدل ترکیبی موجک- شبکۀ عصبی پویا برای پیشبینی یک ماه آیندۀ عمق آب زیرزمینی ارزیابی شده و این مدل با...
متن کاملتولید شتابنگاشتهای مصنوعی برای یک ناحیهی خاص با تبدیل موجک
کلید موفقیت در تحلیلهای تاریخچهی زمانی تا اندازهی زیادی به میزان دسترسی به شتابنگاشتهای متناسب با شرایط خاک محلی بستگی دارد. اما در بیشتر موارد، نگاشتهای ثبتشده در یک ناحیهی خاص بسیار کم است. در این نوشتار، روشی جدید برمبنای تبدیل موجک برای تولید شتابنگاشتهای مصنوعی یک ناحیهیخاص پیشنهاد شده است. تجزیهی نگاشتهای حقیقی ثبتشده در یک ناحیه به سطوح مختلف، سیگنالهای پایه با خصوصیات فی...
متن کاملپیشبینی بارش ماهانه با مدل ترکیبی شبکه عصبی مصنوعی-موجک و مقایسه با مدل شبکه عصبی مصنوعی
بدون شک اولین قدم در مدیریت رودخانه پیشبینی بارش سطح حوضه آبریز میباشد. با این حال، با توجه به بالا بودن خاصیت تصادفی فرآیندها، بسیاری از مدلها هنوز هم به منظور تعریف چنین پدیدة پیچیدهای در زمینه مهندسی هیدرولوژیک توسعه داده میشوند. اخیراً شبکههای عصبی مصنوعی به عنوان یک برونیابی و درونیابی غیرخطی گسترده توسط هیدرولوژیستها مورد استفاده قرار میگیرد. در پژوهش حاضر، تجزیه و تحلیل موجک ...
متن کاملمقایسه قدرت مدل های شبکه عصبی مصنوعی و شبکه عصبی پویا در پیش بینی نرخ ارز: کاربردی از تبدیل موجک
این مطالعه تلاشی است در جهت بهکارگیری ترکیب مدل شبکهی عصبی پویا و تجزیهی موجک جهت میسر نمودن امکان انتخاب یک الگوی بهینه جهت پیشبینی متغیر مذکور میباشد. جهت تحقق این مهم، از دادههای سریزمانی ماهانهی نرخ ارز طی بازهی زمانی فروردین 1377 الی آذر 1391، که مشتمل بر 177 مشاهده بوده که از این بین، تعداد 150 مشاهده جهت مدلسازیها استفاده شده و تعداد 27 مشاهده نیز جهت شبیهسازی و یا به بیان دی...
متن کاملمقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure
کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 3 شماره 4
صفحات 569- 585
تاریخ انتشار 2016-12-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023